On Marcinkiewicz Integral with Homogeneous Kernels

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Inequalities for Integral Operators with Some Homogeneous Kernels

In this paper we study integral operators of the form Tf(x) = |x − a1y| −α1 . . . |x − amy| mf(y) dy, α1 + . . . + αm = n. We obtain the L (w) boundedness for them, and a weighted (1, 1) inequality for weights w in Ap satisfying that there exists c > 1 such that w(aix) 6 cw(x) for a.e. x ∈ n , 1 6 i 6 m. Moreover, we prove ‖Tf‖BMO 6 c‖f‖∞ for a wide family of functions f ∈ L( ).

متن کامل

Rough Marcinkiewicz Integral Operators

We study the Marcinkiewicz integral operator M f(x) = ( ∫∞ −∞ | ∫ |y|≤2t f (x − (y))(Ω(y)/|y|n−1)dy|2dt/22t)1/2, where is a polynomial mapping from Rn into Rd and Ω is a homogeneous function of degree zero on Rn with mean value zero over the unit sphere Sn−1. We prove an Lp boundedness result of M for rough Ω. 2000 Mathematics Subject Classification. 42B20, 42B15, 42B25.

متن کامل

On Integral Operators with Operator-Valued Kernels

It is well known that solutions of inhomogeneous differential and integral equations are represented by integral operators. To investigate the stability of solutions, we often use the continuity of corresponding integral operators in the studied function spaces. For instance, the boundedness of Fourier multiplier operators plays a crucial role in the theory of linear PDE’s, especially in the st...

متن کامل

COLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS

In this paper it is shown that the use of‎ ‎uniform meshes leads to optimal convergence rates provided that‎ ‎the analytical solutions of a particular class of‎ ‎Fredholm-Volterra integral equations (FVIEs) are smooth‎.

متن کامل

Integral Equations with Contrasting Kernels

0 C(t, s)x(s)ds with sharply contrasting kernels typified by C∗(t, s) = ln(e + (t − s)) and D∗(t, s) = [1 + (t − s)]. The kernel assigns a weight to x(s) and these kernels have exactly opposite effects of weighting. Each type is well represented in the literature. Our first project is to show that for a ∈ L[0,∞), then solutions are largely indistinguishable regardless of which kernel is used. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2000

ISSN: 0022-247X

DOI: 10.1006/jmaa.2000.6765